GANNPhos: a new phosphorylation site predictor based on a genetic algorithm integrated neural network.

نویسندگان

  • Yu-Rong Tang
  • Yong-Zi Chen
  • Carlos A Canchaya
  • Ziding Zhang
چکیده

With the advance of modern molecular biology it has become increasingly clear that few cellular processes are unaffected by protein phosphorylation. Therefore, computational identification of phosphorylation sites is very helpful to accelerate the functional understanding of huge available protein sequences obtained from genomic and proteomic studies. Using a genetic algorithm integrated neural network (GANN), a new bioinformatics method named GANNPhos has been developed to predict phosphorylation sites in proteins. Aided by a genetic algorithm to optimize the weight values within the network, GANNPhos has demonstrated a high accuracy of 81.1, 76.7 and 73.3% in predicting phosphorylated S, T and Y sites, respectively. When benchmarked against Back-Propagation neural network and Support Vector Machine algorithms, GANNPhos gives better performance, suggesting the GANN program can be used for other prediction tasks in the field of protein bioinformatics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forecasting Stock Market Using Wavelet Transforms and Neural Networks: An integrated system based on Fuzzy Genetic algorithm (Case study of price index of Tehran Stock Exchange)

The jamor purpose of the present research is to predict the total stock market index of Tehran Stock Exchange, using a combined method of Wavelet transforms, Fuzzy genetics, and neural network in order to predict the active participations of finance market as well as macro decision makers.To do so, first the prediction was made by neural network, then a series of price index was decomposed by w...

متن کامل

A New Method for Intrusion Detection Using Genetic Algorithm and Neural Network

    The article attempts to have neural network and genetic algorithm techniques present a model for classification on dataset. The goal is design model can the subject acted a firewall in network and this model with compound optimized algorithms create reliability and accuracy and reduce error rate couse of this is article use feedback neural network and compared to previous methods increase a...

متن کامل

A New Method for Intrusion Detection Using Genetic Algorithm and Neural Network

    The article attempts to have neural network and genetic algorithm techniques present a model for classification on dataset. The goal is design model can the subject acted a firewall in network and this model with compound optimized algorithms create reliability and accuracy and reduce error rate couse of this is article use feedback neural network and compared to previous methods increase a...

متن کامل

A New Hybrid model of Multi-layer Perceptron Artificial Neural Network and Genetic Algorithms in Web Design Management Based on CMS

The size and complexity of websites have grown significantly during recent years. In line with this growth, the need to maintain most of the resources has been intensified. Content Management Systems (CMSs) are software that was presented in accordance with increased demands of users. With the advent of Content Management Systems, factors such as: domains, predesigned module’s development, grap...

متن کامل

Forecasting the Tehran Stock market by Machine ‎Learning Methods using a New Loss Function

Stock market forecasting has attracted so many researchers and investors that ‎many studies have been done in this field. These studies have led to the ‎development of many predictive methods, the most widely used of which are ‎machine learning-based methods. In machine learning-based methods, loss ‎function has a key role in determining the model weights. In this study a new loss ‎function is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Protein engineering, design & selection : PEDS

دوره 20 8  شماره 

صفحات  -

تاریخ انتشار 2007